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http://news.bbc.co.uk/2/hi/uk_news/scotland/north_east/8375868.stm
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BabyTalk Project

Four main BabyTalk Projects, which ran between 2006 to 2012:

• BT-45 (Gatt et al., 2009)

• BT-Nurse (Hunter et al., 2012)

• BT-Family (Mahamood & Reiter, 2011)

• BT-Clan (Moncur et al., 2013)
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(Mahamood & Reiter, 2011)
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BT-Family Findings

The main findings from the BT-Family research project:

• How information is communicated matters. BT-Family took account of the information that 

needed to be summarised and used communicative strategies to deal with information that 
may induce stress for  a given parent. 

• When evaluated 80% of parents preferred texts that account of such communicative 

strategies.

• When the reports were evaluated on-ward 70% of parents (n=38) felt that information 

contained within the reports that were either “Very Good” or “Excellent”.

• The reports also enabled parents in 81% of respondents to explain their baby's treatments to 

other family members/relatives/friends either to “some extent” or “completely”.

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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https://www.arria.com/about/about-overview/
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Arria NLG

In addition to working on core IP also built applied NLG projects in multiple commercial domains 
ranging across:


• Finance

• Travel

• Agriculture 

• Healthcare

• etc.

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Multimodality & NLG

(Mahamood et al., 2014)
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Über trivago 

• Founded in 2005 by three University friends in Düsseldorf.

• Focused on helping users to find the ideal accommodation and the right price.

• Conducts business in 190 countries with over 3+ million hotels and accommodations. 

• Over 1200+ employees.

• Based in four locations: 


• Düsseldorf — Company headquarters

• Leipzig

• Amsterdam

• Palma de Mallorca

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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trivago Hotel Profiling 

Hotel Profiling helps to derive the unique characteristics of accommodations from factual data to 
enable travellers to chose the ideal hotel. We work on the following areas:


• Perceived Quality — How good is a Hotel X compared to Y?

• Price Knowledge — Is €120 per night on Jan 22 a good price for Hotel X?

• Location Knowledge — Is Hotel X in Amsterdam? If I want to visit Rijksmuseum, what are the 

best hotels around?

• Image Knowledge —Which images do we show to users as gallery images and main images? 

What images are most relevant to users who want romantic hotels? 
• Review Knowledge — Which reviews are the best to show to users? Which review gives the 

most information about the swimming pool?

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Why do we need Explainable AI?

• Increasing adoption of ML/AI models within industry and academia.

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Why do we need Explainable AI?

• Increasing adoption of ML/AI models within industry and academia.

• However, a lot of these models ML/AI models are opaque, non-intuitive, and difficult for people to 

understand.

• Increasing legislative steps such as "Right to explanation" as part of the recently enacted 

European Union's General Data Protection Regulation 

• By providing explanations it will enable ML/AI models that allow users to understand, trust, and 

verify. 

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Potential Benefits of Explainable AI

There are some potential benefits to having having explainable AI solutions (Samek et al., 2017):


• System Verification — Does the system perform/behave the way it should? Especially important for some 
domains such as Healthcare.


• System Improvement — By enabling transparency through explanations it is possible to find weaknesses 
and areas of underperformance.


• Learning from the System — Allow for the distillation of patterns learned by a model to be better 
understood by humans.


• Compliance with Legislation — Does the system discriminate or introduce bias? Is it in legal compliance? 
Examples: 


• Washington Post: Racial bias in a medical algorithm favors white patients over sicker black 
patients (October 24. 2019).


• ProPublica: Biased ML facial recognition models that predict crime recidivism rates (May, 2016).
Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Explanation Modalities

There are four potential modalities for the display of explanations of AI models (Gunning, 2017):

• Analytic Statements — Natural language statements that describe the elements and the 

context that supports the choices made.

• Cases — Invocation of specific examples or stories that supports the choices made.

•  Visualisations — Graphics that directly highlight portions of raw data that supports a choice 

and allows users to form their own understanding.

• Rejection of alternative choices — Statements that argue against alternative choices using 

answers based on analytics, cases, and data.


For at least of three out of theses modalities there is a strong potential to use NLG to generate 
explanations!
Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan



Challenges of using NLG in 
Industry 



31

Commercial NLG Systems

• Rich history of building commercial NLG systems — e.g. FoG (Goldberg et al., 1994). 

• Commercial systems are present in various domains such as:


• Weather (Sripada et al., 2014)

• Automated Journalism (Caswell and Dörr, 2018)

• Oil & Gas (Reiter, 2017)

• Healthcare (Harris, 2008)

• Financial Reporting (Danlos et al., 2011).


• Substantial increase in the number of commercial NLG solutions in the last 5-10 years (Dale, 2019).

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Corpus Analysis Challenges

• Before even building a given commercial NLG system analysing the corpora can induce the 
following challenges:


•  Unavailability of corpora (Sripada et al., 2014).

• Lack of consistency of style in corpora due to multiple authors (Sripada et al., 2004)

• Lack of data access due to privacy (Harris, 2008).

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Building Commercial NLG System Challenges

• Commercial NLG systems differ substantially from academic systems in several key aspects:

• Lower levels of technical capability — lower use of rich linguistic concepts such as REG, 

aggregation, etc (Dale, 2019).

• Greater focus on ensuring the reliability/accuracy —  To avoid legal or commercial liabilities 

(Harris, 2008).

• Reusability & Configurability (Sripada et al., 2014; Reiter 2017).

• Absence of appropriate of Data (Caswell and Dörr, 2018).

• Scalability for large output generation (Harris, 2008).


• Because of the challenges there is sometimes a focus on simplicity instead of cutting-edge 
techniques (Harris, 2008).

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Problem Description

• Texts for accommodation descriptions were generated using a team freelancers for each language 
or through the hotelier. However, the long tail of accommodations may not have any accommodation 
descriptions and may affect their SEO performance. 

• Using NLG can help with several aspects: 

• Cost — e.g. English costs on average 0,06 €, per word. 

• Coverage — Making sure all accommodations have a description 

• Update Frequency — Update details about an accommodation when data changes. 

• Consistency — Making sure all accommodations regardless of value have a high quality 
description baseline.

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Corpus Analysis

• Performed a corpus analysis on human written accommodation descriptions to reverse engineer text back to 
data where possible and to identify any potential issues.

• General Findings:

• Lack of specific descriptive details in identity data.

• For example "comprehensive breakfast buffet each morning”.

• Incomplete coverage of room features in identity data — e.g. Whether there is free in-room bottled water.

• Paucity of restaurant/dining data — No specific details about type of food service or cuisine type available 
as an example. 

• POI data challenges — No comprehensive transportation data, inability to generate accurate distances for 
POIs, unable to suggest relevant nearby POIs for travel types, etc.

• Focused on generating objective descriptions of accommodations as a first starting point.
Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Solution: Hotel Scribe

• Hotel Scribe is English only NLG system that can generate accommodation descriptions 
automatically for Hotels. 

• Built with the focus of generating texts with a high level of textual variation for the benefit of SEO. 
This is done by: 

• Semantic variation — Varying what content to talk about. 
• Content ordering variation — Varying the order of how content is placed. 

• Aggregation variation — Varying how and when concepts should be aggregated in a single 
sentence or not. 

• Linguistic variation — Variation in how the concepts are expressed in language. 
• Phrase/word level variation.  

• REG variation — “accommodation” vs. “hotel” vs. “Hilton”
Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Example Text Output

"The Park Plaza Victoria London, a four-star residence, is a Hotel in London, the United Kingdom. This 
accommodation is placed near to Victoria Station, making it useful for travellers.   

There is no fee Internet connectivity throughout the hotel in both public and in-room hotel areas. 
Parents of children should note that there are a variety of child friendly facilities including childcare 
facilities and baby cribs. Visitors can be entertained by the presence of a pool. Parking amenities 
comprises of a close by car park, with valet parking. Speedy check-in/check-out with a 24 hour front 
desk is also conveniently available for travellers. For business travellers, this accommodation features 
conference/meeting rooms and a business centre. Food is obtainable through the provision of an on-site 
restaurant and a café. 

In the Park Plaza room amenities vary and contain an array of features including coffee/espresso 
machine, ironing board, windows that open and central heating. Entertainment is available for guests, 
which is provided by pay TV. Additionally, some rooms come with views of the city."
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Example Text Output II — Variation

"The Park Plaza Victoria London, a four-star residence, is a Hotel in London, the United Kingdom. This 
accommodation is positioned conveniently close to Victoria Station, making it easier for travellers to 
move about within the city.    

This accommodation features a business centre and conference/meeting rooms. There is complimentary 
Internet access in the hotel in both in-room and public hotel areas. Meal choices are accessible in this 
accommodation through an in-house restaurant and a café. Parents of children should note that there are 
several child friendly amenities including childcare facilities and baby cribs. Parking amenities consists of 
a close by car park, with valet parking. Speedy check-in/check-out can be done at the 24 hour reception 
from 14:00 for check-ins and as late as 12:00 for check-out. Additionally, guests can be entertained by 
the presence of a pool in this hotel. 

In this hotel, rooms contain amenities such as air conditioning, radio, windows that open and an electric 
kettle. Visitors have access to cable TV for in-room media entertainment. Additionally, some rooms come 
with views of the city."
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Evaluation & Current Status

• Evaluated level of textual variation against human and a commercial competitor. Using a commercial 
anti-plagiarism software (copyscape) and Levenshtein Edit Distance (Foster & White, 2007).

• Human texts outperform on both measures Hotel Scribe and the commercial competitor by 
significant margin.

• However, Hotel Scribe (44.02, 296.25) has near comparable performance to the commercial 
competitor (32.43, 345.35).

• In production for generating descriptions of Hotels in English since January, 2019.
• Generated over 600,000 accommodation descriptions. 

• Currently, undergoing A/B SEO testing to determine the value of NLG texts.

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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https://www.trivago.co.uk/friedrichshafen-718/hotel/traube-am-see-5004



12th International Natural Language Generation  
(INLG) Conference, 29th of October-1st of November, Tokyo, Japan.  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Challenges in reviews summarisation
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General Approach
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The extractive approach



52

Finding Abstractive Candidate Sentences
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Sentence Score Calculation





Hotel Name USP Text Output

Insula Alba Resort & Spa Beautiful hotel with a modern amenities.

Leonardo Hotel Heidelberg Well-equipped rooms with stunning city views.

Hyannis Holiday Luxury amenities and convenient location.

Hotel Nomo Soho Prestigious hotel with great views of Manhattan.
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But sometimes…

• Text-to-text ML summarisation can lead hallucinations or reporting factually incorrect information:

• “Terrace pool with romantic children's experience” — Hallucination.

• “On-site bar and restaurant with food” — Redundant information.  
• “Hi-rise hotel with great views of the water” — Factually incorrect. Accommodation is not 

directly near the water.

• Mitigated through:


• Better training data.

• Post-hoc symbolic rules to either penalise certain candidates or prevent phrasings to occur. 

• Lengthy development testing-refinement cycle until confidence in the system has been 

ascertained.
Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Background

• Users are increasingly booking “alternative” forms of accommodation instead of traditional types 
such as Hotels, Hostels, etc.


• However, many alternative accommodations lack user based reviews.

• In trivago’s case this is around 70% alternative accommodations.


• The lack of reviews makes it difficult for users to make informed decisions on whether to book a 
given alternative accommodation item or not.


• Therefore, an objective measure is required to allow users to judge the “quality” of a given 
alternative accommodation item.

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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AA Star Rating

• Model that computes for each alternative accommodation item a star rating on a 1-5 scale.

• Uses objective features such as the types of amenities present, size, location, etc.

• Soon to be deployed into production for alternative accommodation items at trivago: 

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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https://skift.com
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Natural Language Explanations Opportunities 

• Scores generated by various comparison/booking sites for alternative accommodations are not 
directly comparable.

• Different factors taking to account: Objective vs. Subjective.

• trivago aims for broad AA star rating alignment with other sites in most cases.


• Natural Language Explanations can help the inform the user why a given accommodation is rated 
the way it is by describing the drivers and offsets:

“This apartment was rated three stars due to featuring key amenities such as a gym and an open 
fireplace, but it is some distance away from the city centre.” 

• Such explanations could users by allowing them to more easily understand the rational for different 
ratings given for the same alternative accommodation item by different sites.

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Aspect Ratings

• Scores for each aspect is gathered from many multiple sources and aggregated together to form 
the final score.


• Potential here to generate explanations on why a given aspect is rated with a particular score:

• “Guests highly rate breakfast at the Park Platz Hotel because of  the unlimited coffee refills and 

generous portion sizes.”  
• “Comfort is highly rated at this hotel due to the comfortable bedding provided.” 

• Challenging as it requires inferring from user reviews to understand the causal reason for the 
ratings scores given.

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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trivago.com

http://trivago.com
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Marketplace Ranking

• Like many sites trivago tries to optimise the ranking of hotels to increase the likelihood of a user 
clicking on a deal.


• To recommend the best options to our visitors we try and take into account explicit and implicit 
user signals within a session (clicks, search refinement, filter usage) to detect the users’ intent.


• Recommendations are updated to tailor the result list dynamically based on the users’ intent and 
actions.

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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https://recsys.trivago.cloud
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Natural Language Explanations Opportunities 

• The value of generating explanations for recommender systems is well understood (Tintarev and 
Masthoff, 2012). 


• Explanations for Marketplace recommendations can allow users to better understand why 
accommodations are ranked in the given order.


• Gives users the opportunity to amend their explicit intent if the recommendations are not what they 
expected:

• Reduces user friction / frustration.

• Learning opportunity to fine tune performance of the MarketPlace recommender system. 

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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Conclusions 

• Increasing change away from data being the “black box” to AI models.

• NLG can play a significant role in generating explanations for these models.

• However, deployment of industry NLG based solutions historically has not been without its 

challenges.

• At trivago we are making of use of data-to-text and text-to-text NLG solutions and see strong 

potential for the use of natural language for generating explanations of AI models.

Saad Mahamood, 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI2019). 29th of October 2019. Tokyo, Japan
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